Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate tables</td>
<td>267</td>
</tr>
<tr>
<td>Rates</td>
<td>266</td>
</tr>
<tr>
<td>Rates are</td>
<td>268</td>
</tr>
<tr>
<td>Ratios are</td>
<td>264</td>
</tr>
<tr>
<td>Shadow ratios</td>
<td>264</td>
</tr>
<tr>
<td>Reasonableness</td>
<td>147, 148, 331</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>A way of thinking</td>
<td>392</td>
</tr>
<tr>
<td>Boats</td>
<td>400</td>
</tr>
<tr>
<td>Building</td>
<td>408</td>
</tr>
<tr>
<td>Candles</td>
<td>412</td>
</tr>
<tr>
<td>Changes</td>
<td>402</td>
</tr>
<tr>
<td>Friction, force and motion</td>
<td>418</td>
</tr>
<tr>
<td>Ice cubes</td>
<td>414</td>
</tr>
<tr>
<td>Liquids</td>
<td>393</td>
</tr>
<tr>
<td>Magnifying</td>
<td>396</td>
</tr>
<tr>
<td>Moonshine</td>
<td>406</td>
</tr>
<tr>
<td>Objects in water</td>
<td>404</td>
</tr>
<tr>
<td>Paper planes and kites</td>
<td>409</td>
</tr>
<tr>
<td>Pendulums</td>
<td>410</td>
</tr>
<tr>
<td>Safety first</td>
<td>391</td>
</tr>
<tr>
<td>Seeds and plants</td>
<td>397</td>
</tr>
<tr>
<td>Shadows</td>
<td>416</td>
</tr>
<tr>
<td>Teacher questions</td>
<td>392</td>
</tr>
<tr>
<td>Worms and other animals</td>
<td>399</td>
</tr>
<tr>
<td>Sorting</td>
<td>68</td>
</tr>
<tr>
<td>Assessment</td>
<td>87</td>
</tr>
<tr>
<td>Attribute blocks</td>
<td>76</td>
</tr>
<tr>
<td>Attributes</td>
<td>72</td>
</tr>
<tr>
<td>Expanding thinking and vocabulary</td>
<td>73</td>
</tr>
<tr>
<td>People sorting</td>
<td>81</td>
</tr>
<tr>
<td>Sharing ways</td>
<td>72</td>
</tr>
<tr>
<td>Sorting by attributes</td>
<td>69</td>
</tr>
<tr>
<td>Sorting in life</td>
<td>74</td>
</tr>
<tr>
<td>Sorting tree</td>
<td>82</td>
</tr>
<tr>
<td>Students describe themselves</td>
<td>79</td>
</tr>
<tr>
<td>Teaching definitions</td>
<td>75</td>
</tr>
<tr>
<td>To teach the meaning of selected words</td>
<td>83</td>
</tr>
<tr>
<td>Why do we sort and classify</td>
<td>68</td>
</tr>
<tr>
<td>Speaking math</td>
<td>171</td>
</tr>
<tr>
<td>Spelling notebooks</td>
<td>49, 73</td>
</tr>
<tr>
<td>Statistics</td>
<td>160</td>
</tr>
<tr>
<td>Students checking students work</td>
<td>21, 41</td>
</tr>
<tr>
<td>Surrounding with the concept</td>
<td>22</td>
</tr>
<tr>
<td>Symmetry</td>
<td></td>
</tr>
<tr>
<td>Definition</td>
<td>96</td>
</tr>
<tr>
<td>Four types</td>
<td>100</td>
</tr>
<tr>
<td>Hinged mirrors</td>
<td>97</td>
</tr>
<tr>
<td>Mirrors</td>
<td>96</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>205</td>
</tr>
<tr>
<td>Minutes, miles and meaning</td>
<td>208</td>
</tr>
<tr>
<td>Questions that we ask</td>
<td>207</td>
</tr>
<tr>
<td>Teaching time</td>
<td>207</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unifix break-aparts</td>
<td>226</td>
</tr>
</tbody>
</table>

Experiences with ... 189
Map of the class .. 198
Mapping ... 195
Measurement is ... 189
Measuring tools .. 201
Questions that we ask .. 191, 193
Rice and sand .. 191

Mental Arithmetic ... 328, 330
Money .. 277
Assessment .. 280
Money questions .. 278
Teach money by using money ... 280

N
Ninety-nine lessons ... 455
Kindergarten Sequence .. 456
First—Second Grade Sequence ... 459
Third—Fourth Grade Sequence ... 465
Fifth—Sixth Grade Sequence ... 473

Numbers ... 34
Area - geoboard .. 58
Assessment for Counting .. 36
Cardinal ... 39
Counting .. 34, 36
Creating the Environment ... 34
Doing numbers ... 40
In columns ... 37
Names for numbers ... 38
Ordinal .. 39
Recording .. 45
Saying means knowing what is said .. 35
Surrounding with the concept .. 44

P
Parental involvement .. 446
Power Block Lesson .. 434
Three elements .. 434

Patterns .. 15
0-99 Matrix .. 26
A different way .. 22, 23
A-B patterns ... 17
A-A-B patterns .. 57
Art .. 28
Assessment .. 19, 26
Knowing we can know .. 15
Patterns and connections .. 16
Patterns everywhere .. 20
Patterns recorded .. 24
Searching for patterns .. 17
Ways to make three ... 57

Percent .. 274
Are decimals equivalent to percents? .. 274
As a part of life ... 275
Percent means ... 275
Probability .. 160, 174
Making sense out of patterns ... 185
Predicting .. 174, 184
Rolling dice .. 178
The study of .. 185
Tossing cardboard squares .. 174

R
Ratios ... 264
Bouncing balls ... 265
Diagonal ... 265

© Center for Innovation in Education 2009 484

Index
Index

Stories and Philosophical Asides

1,000 words (Are we really as terrible at math as we may think we are?) ... 123
23+32 — (13+32) (The x in algebra is more than just a letter) .. 384

A

A father and his son (Letting students find answers for themselves) .. 141
A hundred years from now (Preparing our students for the future or preparing them for the past?) .. 283
A single sandwich (There is much more math in a lunch bag than on any workbook page) .. 352
A soccer story (As teachers, we are the makers of the rules) ... 74
A way of thinking (Science is mathematical thinking applied) ... 392
As real as language (Why reteach math concepts in each new grade?) ... 124
Awareness means (Learning to look and learning to ask why) .. 116

B

Basing our curriculum on mediocrity (Basing our curriculum on the end-of-year test) ... 348
Black-eyed peas (A lesson is a flexible guide and not a frozen script) ... 106
Boys and girls (We can get what we accept or we can get what we expect) ... 422
Brenda’s story (Using students’ writing as an assessment tool) .. 145
Building (What our students learn from building) ... 91

C

Calculators (What calculators can and cannot do) .. 128
Checking your neighbor (Students helping each other makes it possible for everyone to learn) ... 21
Concept, connecting, symbolic (Linking concepts to symbols) .. 51
Confusion (Knowing how multiply or divide does not teach us how to use these skills) ... 214
Connections (How do we get learning into memory) ... 453
Conversation between two parents (Making word problems real) ... 151
Credibility (We insure the materials we use have credibility with our students) ... 126

D

Da da wee (Tolerance for answers not yet right) .. 33
Driving down the street (The math involved in simply driving down the street) .. 188

E

Eight questions (Eight questions as a starting point for explorations of all kinds) .. 9
Everybody Counts (A Report to the Nation on the Future of Mathematics Education) .. 442
Everybody wants to learn (Even repeated failure does not discourage our natural desire to learn) ... 421
Excuses (Rationales for not letting students use calculators in class) .. 285

F

Fast finishers (Right answers do not always measure understanding) .. 277
Fifty-four marbles (Thinking about what numbers actually represent) ... 249
First up, last up (Giving everyone the chance to feel that he or she can win) .. 297
Fraction (Children are familiar with fractions from their earliest years) .. 240

G

Geoboards and Mr. Pick (Pick’s theorem for areas on the geoboard) .. 364
Geometry is (Geometry is more than we learned it was in high school) .. 90
Grade-school algebra (Why teach algebra in the elementary grades?) .. 361
Guides and nothing more (The lessons in this book are guides and nothing more) .. 240

H

Hayley (Understanding or misunderstanding the concept of area) ... 59
How long do we linger? (When to move on and still leave no one behind) .. 44
How many times? (What does it mean to multiply?) ... 333
I

I believed (When we provide the answers, we eliminate our students’ need to think) .. 327
I wasn’t really reading it (Focusing on what is right and not on what is wrong) ... 65

J

Jill (Experiencing shapes) ... 94
John’s story (Why do we learn algebra in school?) .. 359

K

Kevin and the teacher, of course (Kevin uses his graphing skills to prove a point) ... 161
Knowing we can know (Children who know they can know are children who will learn) .. 15

L

Learning from the lesson (What we can learn from the lessons that we teach) ... 309
Let the answer be (We must learn to let our students be wrong sometimes) .. 140

M

Mathematics is in (An overview of the math in our lives) .. 1
Meaning (What makes sense is kept in long term memory) .. 454
Michelle (Calm teacher, out-of-control class) .. 422
Index

Monica and Andrew .. 147
Mr. Smith (Making word problems real.) 150

N
No limit to the learning (Is the time spent on free exploration worth it?) 6
No nonsense (We use our knowledge of how the brain works in our lessons.) 454
No one knows anything (Our initial assessment) 33
Not equivalent (Why decimals are not equivalent to percents.) 274
Number-one responsibility (Our students are our number-one responsibility.) 451
Numbers are different than letters (Numbers are learned in patterns to be seen.) 37

O
One busy teacher says (Do we have the time to teach this way?) 3
One question (An example of the questions that can follow once one question is asked.) 388

P
Painting the house (Thinking about the numbers or knowing the algebra to use?) ... 253
Playing with the blocks (The value of free exploration) 241
Problems out the door (A quick assessment tool.) 127

R
Rats (Mind's growth comes from a rich and varied environment with which to interact.) ... 453
Ryan (Understanding or misunderstanding the concept of area) 58

S
Science (Science is a way of thinking, too.) 390
Seventeen and seventy (Why we assume no one knows anything) 38
Something we see (Why is seeing-patterns important.) 14
Sort and classify (Sorting and classifying as a part of life.) 68
Speak math (Looking for the math that surrounds us all the time) 171
Speaking math again (We can teach the parents of our students to speak math, as well.) ... 435
Stories (Stories of people using math with and without understanding) 122
Surrounding the child with the concept (Creating the learning environment.) ... 22

T
Terry (Our pattern-seeking minds are lightning-quick.) 67
The awareness we create (Is the purpose of the question the answer or stimulating thought?) ... 252
The basics (What is a ‘basic’ education, anyway?) 434
The eighteen year old (People do not always know what we think they know.) ... 206
The house across the street (Opportunities that arise or that we create show math in use.) ... 118
The letter carrier (Teaching negative numbers) 367
The math that is already there (Encouraging our students to see the math in their own lives.) ... 146
The SCANS basics (What Work Requires of School - A SCANS Report) ... 439
The story told again (Why do we learn algebra in school?) 360
They do not know what we think they know (Children’s thinking is not like ours.) ... 32
Thirty children, thirty teachers (None of us is as smart as all of us.) 19
TIMSS (Third International Mathematics and Science Study) 357
To think mathematically (What does it mean to think mathematically?) 16
Too late for the beginning (Billy is three, and so is Billy’s dad.) 32
True stories (Examples of adults who have not learned to see patterns in math) ... 342
Twenty problems or just one (Encouraging our students to see the math in their own lives.) ... 152

V
Vending machine (Students learn about money by using it.) 278

W
We can be thankful (We use sorting and classifying nearly everywhere in life.) ... 87
We sort (What do we sort in life?) .. 74
We take away the math from girls (The math in toys matters) 92
What does it mean to begin? (Learning starts before students start school) ... 124
What might we learn (Learning is a natural part of everybody’s life.) 208
What we have to understand (Do we have the background for teaching math?) ... 2
Why tessellate? (Patterns in math are visual as well as numerical) 102
Windows (Mathematics is all around us all the time) 68
Wondering means (Learning to ask why) ... 117

© Center for Innovation in Education 2009

Index
Index

Questions from Teachers

Free Exploration and Creative Learning
How much time should we allow for free exploration? .. 11
What materials do we allow our students to explore? ... 12
Is there any particular assessment we should be making as our students are free exploring? If so, what should we be assessing? ... 12

Patterns and Connections
Most of my students can see the A-A-B and A-A-A-B patterns, but I'm not so sure about two or three children in particular. Do I wait until I am sure these children see, or do I go on to the next lessons? I hate to hold everyone else back for these few. .. 28
Some of my students still want to play with the materials when I am trying to get them to create patterns. What do I do if some of my students are still at the free exploration level when I want to begin work with patterns? ... 28
The dialog in this chapter show the teacher using words like diagonal, parallel, symmetry, create, predict, extend, matrix and so on. At what grade level would you recommend beginning to use words like this with students? .. 29
Is there a particular sequence of A-B patterns that is recommended? ... 29
What if I don't see the patterns my students see? ... 30

Beginning Number
Don't we have an obligation to move every child along as fast as that child is ready to move? Are not we doing a disservice to all children by having the slowest children be the determiners of the progress of the whole class? .. 64
Do we really move everyone at once? .. 65
Not all children are ready to explore the same number at the same time. Shouldn't we either assess each child to determine that child's appropriate starting number, or at least determine a range of numbers for each child to explore? ... 65
How do we know when to move on? How do we know when we have left no one behind? ... 65
How do you indicate children should write numbers to record their designs? Do you mean kindergarten children as well? ... 66
How do we keep track of where our students are, for ourselves, for the parents, for our administrators and for next year's teacher? .. 66

Sorting, Classifying, Expanding Language
How do we assess that a child is learning what he or she is supposed to be learning as we are teaching about sorting and classifying? .. 87
You refer to the sortings or the rules for sortings as "patterns." Isn't this confusing? When my students and I use the word patterns, we mean things like A, A, B, A, A, B and not two-hole, four-hole sorting. ... 88
It seems that all of the sortings in this chapter use only two groups. When do students sort into groups of threes and fours and fives? ... 88
When would you use Venn diagrams? .. 88

Geometry, Shapes, Relationships and Constructions
How do we assess geometry? .. 119

Beginning Addition and Subtraction
How do we assess? .. 156
In Lesson One, all students worked for the same amount of time and not for the number of problems to be solved. But they were making up their own problems with squares. When we make up the problems, what is a good number of problems to give? How long should our students work? .. 157
Within each lesson there appears to be no grade-level separation. The advanced problems are mixed in with the easier ones. In Lesson One, for example, taking handfuls of squares to make up addition problems is included right along with finding series of consecutive whole numbers. How do we know which problems to do for which grade levels? .. 157
I use something I call "Mad Minute" to time test my students on the basic facts. I find it very useful for drilling my students on quick recall. The students are given a minute to do the problems on each of several increasingly difficult pages. One page per minute, one minute per day. Once they can do one page at a mastery level, they pass on to the next sheet of problems for the next Mad Minute drill. My students love it and they learn so much from this test of speed. What harm is there in this? .. 158

Graphing, Probability and Statistics
The probability in this chapter involves tossing cardboard squares and rolling dice and comparing the charts and graphs our students make.
The only conclusion was that some things are more likely to happen than others. What about odds and ratios and all the rest of probability? 186
As we teach our students to graph, what is our assessment to be? ... 186

Measurement, Estimation and Time
How do we assess measurement activities? .. 212
How do we know what to do in measurement for each grade level when the lessons do not say what grade level they are for? .. 213
I am not sure what it is we are supposed to teach our students about measurement. Are they just supposed to problem solve and make maps, or are there particular measuring skills to teach, like knowing how to use a ruler? ... 213

Beginning Multiplication and Division
Some of the multiplication and division problems the children encounter as they look for problems in their own environment may be very, very large. Should we delay trying to find answers to the larger problems until we are teaching advanced multiplication and division? .. 237
Shouldn't we put more emphasis on memorizing the facts? Knowing all the facts will help our students pass the tests they face in school.
Knowing all the facts will help our students find the answers faster when they leave our room. .. 237
Is there a particular assessment we should use? .. 237

Fractions, Ratios, Money, Decimals and Percent
How do we assess for fractions? What kind of assessments might we use? 281
Index

In Lesson Ten, for the multiplication problems on the geoboard, the fractions in the answers were not reduced. Why not? Isn't the teaching of the reducing of fractions an extension of equivalencies? ..281

Advanced Addition and Subtraction

In the books Mathematics Their Way and Mathematics a Way of Thinking, children made up words like "yuck" and "zurkle" to describe the groupings for the different bases. Why are made-up words not used in this book? ..331

Doesn't it confuse students to see 10 and not have it mean ten? Wouldn't it be easier to have our students say "ten" whenever they see 10 written, or "eleven" whenever they see 11, regardless of the base? Saying "one cup, one" seems so artificial. ..331

Is it really fair to let our students use calculators in school anytime they want? ..331

What do we do when there are report cards we must fill out? ..332

Advanced Multiplication and Division

What is our assessment of division to be? ..354

It seems that the more advanced the chapter, the fewer the problems we give the students to practice what they have learned. The one-sandwich problem could occupy our students for a week. Why do we seem to do fewer problems as we advance and not more?355

Algebra

At what grade level should we begin teaching algebra? ..387